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N Abstract. This paper proposes an improved high-resolution technique that incorporates the forward loriginal) array. together
with its complex conjugated backward version to achieve superior performance. This is in turn realized by averaging the
forward covariance matrix and the backward one, and using it in conjunction with the MUSIC technique. This paper also
presents hc asymptotic analysis in terms of first-order approximtions of the mean and variance of the null spectrum estimator.

1 It is shown here that in an uncorrelated scene, the bias corresponding to this scheme is exactly half of that associated with
the conventional one while maintaining the same variance. Furthermore, the bias expression in the new scheme is. used to
obtain a resolution threshold for two uncorrelated, equipowered plane waves in white noise and the result is compared with
that _btatned by the conventional scheme for the same source scene.

Zusammenfassung. Dieser Beitrag schlagt emn verbessertes, hochauflosendes Spektralanalyseverfahren vor, bci dem das
Vorw~rts-Array und das zugehorige konjugiert-komplexe Ruickwiirts-Array kombiniert werden, vim besseres Verhalten zu
erzielen. Dies wird dadurch erreicht, dap3 der Mitteiwert von Vor- und Riickwiirtskovariantzmatrizen gebildet und anschliep3end
der MUSIC-Algorithmus verwendlet wird. Auperdemn wird eine asymptotische Analyse von Mittelwert und Varianz des

* Nullraum-Spektralschatzers vorgestellt. Es wird gezeigt, dap3 bei unkorrelierter Umgebung Mitteiwert und Vdiianz genau u;,.
den Faktor zwei gegenuber dem herkommlichen Verfahren redluziert werden konnen. Die Ausdrucke fur den Schaitzfehler

* .werden daruiberhinaus verwendlet, urn eine Auflosungsgrenze fUr zwei unkorrelierte. im weit~en Rauschen eingebettete ebene

Wellen gleicher Leistung anzugeben. Dieses Ergebnis wird mit der Grenze, die dlas herkommliche Verfahren fur gleiche
Eingangssignale liefert, verglichen.

Resumi. Cet article propose une technique ii haute resolution am~lior~e qui incorpore Ia sequence avant (originale) av.ec sa
' ~ version conjugu6 complexe arri~re pour atteindre des performances superieures. Ceci est realis6, t son tour, en calculant ia

moyenne de Ia matrice de covariance avant et arri~re et cn l'utiliaNdrt en conju~nction a,6cc la technique MUSIC. Cet article
pr~sente 6galement I'analyse asymptotique entermes des approximations d'ordre un dlamovenne et de la variance de

p ~ 'estimateur spectral sans effet. 11 est montr6 ici. que dans une scene sans correlation. le biais et Ia variance correspondant
I cette m~thode sont exactement la moiti6 de ceux associ~s avec Ia m~thode conventionnelle. En plus, les expressions dle

1 c4biais dle la nouvelle mttthode sont utilis~es pour obtenir un seuil pour deux ondles planes non corrd16es et A n~rgie 6gale
dlans du bruit blanc et le r~sultat est compar6 A celui obtenu par la m~thode conventionnelle pour Ia mrime scene de source.

Keywords. Underwater signal processing, detection and estimation of multiple signals.

1. Introduction

The eigcnstructure-based high-resolution techniques for estimating the arrival angles of multiple plane
wave signals have been of great interest since the well-known works of Pisarenko [14], Schmidt [161 and
others [2-4, 7, 9, 11, 17]. These methods, in general, utilize certain eigenstructure properties resulting from
the special structure of the sensor array output covariance matrix for planar wavefronts [ 161 to generate

*This work was supported by the U.S. Office of Naval Research under contract N-00014-86-K-0321.
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spectral peaks (or equivalently spectral nulls) along the actual directions of arrival whenever the sources

are at most partially correlated.
When the exact ensemble average of the array output covariances are used, all these methods result in

unbiased values (i.e., zero for the null spectrum) along the true arrival angles, irrespctive of signal-to-noise

ratios (SNRs) and angular separations of sources. However, when these covariances are estimated from

a finite number of independent snapshots, these techniques exhibit deviations from their ensemble average

values. These deviations depend on the specific scheme under consideration together with the SNRs and
other signal and array specifications. All these taken together determine the resolution capacity of the

technique under consideration.
This paper proposes an improved high-resolution technique without compromising on the size of the

original array. In addition to the forward (original) array, this new scheme makes use of a complex
conjugated backward version of the original one to achieve superior performance. This is in turn realized

by averaging the forward covariance matrix and the backward one, and using this averaged matrix in

conjunction with the MUSIC estimator. A detailed performance inalys-s cf this new scheme, when
covatiances estimated from a finite sample size are used in place of their ensemble averages, is also

presented along with first-order approximations of the mean and variance of the null spectrum estimator.

The organization of this paper is as follows: For clarity of presentation, the conventional scheme is

summarized and the proposed one is described in Section 2. Using results derived in Appendix A, Section

3 presents the first-order approximations of the mean and variance of the null spectrum estimator

corresponding to this new scheme and the conventional MUSIC scheme. The bias expressions are then

used to obtain a resolution threshold for two uncorrelated, equipowered plane wave sources in white
noise; and this result is compared to the resolution threshold in the conventional case [8] for the same scene.

2. Problem formulation

Let a uniform array consisting of M sensors receive signals from K narrowband sources u,(0,

u,(0,.-., uK (t), which are at most partially correlated. Furthermore, the respective arrival angles are
assumed to be 0,, 02...... 0 K with respect to the line of the array. Using complex envelope representation,
the received signal x,) at the ith sensor can be expressed as [12]

K
x,(t)= ui(tO e j4 1,"' I " + n,(t).(1

k-I

Here the inter-element distance is taken to be half the wavelength common to all signals and n,(t)

represents the additive noise ai the ith sensoi. It is assumed that the signals and noises are stationary,

zero-mean circular Gaussian' independent random processes, and further, the noises are assumed to be
independent and identical between themselves with common variance o2. Rewriting (1) in common vector

' A complex random vector z is detined to be circular Gaussian if its real part x and imaginary part y are jointly Gaussian and
their joint covariance matrix has the form 15, 10]

where -x + jy. When z has zero mean, its covariance matrix is given by E[zz'] A b [(x + jy)(,x I -jy)] = j 14'. Clearly, E(zZ' ) 0.
Here onwards A', A*r A ' stand for the transpose and the complex conjugate transpose of A, respectively.

SigriaP trrnes, rng
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notation and with o1 = -I cos O, k = 1, 2. K, we have

K

Xft=NMv uk(t)a(wk)+n(t), (2)

where xr(t) is the M x I vector

.r"(t) = [x,(t0, X'(t) ..... W, t]',  (3)

and a(wk) is the normalized direction vector associated with the arrival angle 0 , i.e.,

a(wk)= -[I,e "',e '-". e (4)
v'Al

The array output vector xr(t) can further be rewritten as

x",!) 4- " (5)

where

U t) [u(t), U,(t). UK(t)] r , n(t) =[n,(t), n.( 0. n~,(t)] r, (5a)

and

A = v"M[a(w,), a(w.) .... a(WK )]. (5b)

Here A is an M x K matrix with Vandermonde-structured columns (M > K) of rank K. From our
assumptions it follows that the (forward) array output covariance matrix has the form

R'A E[x'(t)x'(1)] =ARA' +-u2J, (6)

where

Ru E[u(t)u (t)] (6a)

represents the source covariance matrix which remains as nonsingular so long as the sources are at most
partially correlated. In that case AR',A' is also of rank K and hence, if A I A, .-> A. and

3 ...... M are the eigenvalues and the corresponding eigenvectors of R' respectively, i.e.,

R= VAffl,(7)
I I

then the above rank property implies that AK +1 = AK 2 AI = 0 ' 2 and the eigenvectors corresponding
to these equal eigenvalues are orthogonal to the direction vectors associated with the true arrivals, i.e.,
fXa(Wk) =O, i= K + 1, K +2,..., M, k = l, 2 .. , K. Hence the K nulls of Q(w) given by J

,Af K

Q(.) II3ka(w) 2 =1- J If3'a(w)J2  (7a)
k-K' k-l

correspond to the actual directions of arrival [161.
To improve the performance of the above estimator, in addition to the forward (original) array, we

propose to make use of the complex conjugated backward array of the original one. Let xb(t) denote the
complex conjugate of the backward array, i.e.,

xh) =[x*t(),x*, ,(t) .Auh'nh(), (8)

K __
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where
ub(t)Au[(tu(), u ,( . ub(t)] T, ub(t)=u'(t)eJ'M-7Ih' , (8a)

and
n"(t) =[n* (t), n* _(t),. , n*( t)] .  (8b)

It follows that the backward array output covariance matrix has the form

R" = E[xb(t)Xbt(t)] = ARA t+op21, (9)

where

R' = E [Ub(t)Ub1(t)]. (9a)

Averaging the forward covariance matrix and the backward one together, we define the forward/back-
ward (f/b) covariance matrix as

._ -A2( R'+ R") = ARuA'+ + 1, (10)

where
2 u U(R' + R by (10a)

It is easy to show that whenever the rank of R, is at least K - 1, the same is true for RU and moreover
in that case hu is of rank K [12, 13]. Hence the eigenvalues of J- satisfy A1 A2 />" " " K > AK +1 = Ik 2

. AM = o2. Consequently, as in (7a) the K nulls of O(w) given by

M KO (W) Y_ Ifik a(w)J-2 =t - fik'a w )12
k=K+I k l

will correspond to the actual directions of arrival. Here fi,, i2,..., fi are the eigenvectors of R-
corresponding to the eigenvalues A1, A2 ... ,AM; i.e.,

M

I=1

Notice that the above lower bound on the rank condition (rank R, = K - 1) physically corresponds to
one coherent arrival among the K sources; and further the full rank property for the equivalent source
covariance matrix R, in that case implies that the coherent 'ource has been essentially decorrelated by
the simultaneous use of the fo yard and backward arr h-ovever, the main advantages of this modified
scheme do not become apparent until its performanc, - iation is completed in the more realistic
"data-only known" case.

So far we have assumed that an ensemble average of the array output covariances are available. Usually,
these exact averages are unknown and they are estimated from the array output data. Often this is carried
out for the unknowns of interest using the maximum likelihood procedure. For zero-mean M-variate
(circular) Gaussian data x'(t), n = 1, 2,..., N in (5), with unknown M x M covariance matrix Rf, the
maximum likelihood (ML) estimate S' of the covariance matrix is given, referring to [], as

N tft

Using the invariant property of the maximum likelihood procedure, ' ,e cC!responding estimates Sb
and S for the unknown matrices Rb and R- can be constructed from S' by the same rule that is used in
constructing Rh and R, respectively, from R', i.e.,

2naPr (S+sn),
Signal Processing
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with

NSo ='N.-I x b( t)Xb ( t.)"

In what follows we study the statistical properties of these estimated covariance matrices and their

associated sample estimators for direction finding.

3. Performance analysis

3.1. Main results

This section examines the statistical behavior of the proposed forward/backward scheme and derives

expressions for the bias and the resolution threshold for two equipowered uncorrelated sources. These
results are substantiated by simulation studies and comparisons made with similar results obtained in the

conventional case [8]. Toward this purpose, consider the eigen-representation

=(12)

for the ML estimate of the f/b matrix A, where

=[ii2.... , i,, .. ,i], L=diag[,,..., ,,.., ], and it =IM,

which satisfies ii, - 0, i = 1, 2,..., M for uniqueness. Here the normalized vectors ie, e2 , iK are the

ML estimates of the eigenvectors f1il, 2, ... , fiK of R respectively [5]. Similarly, 11, 12,. K are the
ML estimates of the K largest and distinct eigenvalues A1, 2 ,.. ., K, and the mean of TK .,..., TM is
the sample estimate of the repeating lowest eigenvalue o_2 of . Following (11), the sample direction

estimator can be written as

M K

Y(_) ia(c)I2= I1- Y Jia(w)I2. (13)
k=K+l k=l

The asymptotic distribution of the estimates of the eigenvalues and eigenvectors associated with the

distinct eigenvalues of R is derived in (A.35)-(A.36) of Appendix A. Corresponding results for the

conventional scheme in (7a) can be readily evaluated as special cases of this general result. It is also

shown that that the estimated eigenvalues and a specific set of corresponding unnormalized eigenvectors
are asymptotically (in the sense of large N) jointly Gaussian with means and covariances as derived there

(see (A.37) and (A.38)). Further, after proper renormalization and using an exact relationship developed

in Appendix B among the different sets of eigenvectors, it is shown in Appendix A that (see A.49)

N , M ik

I M a(w)fikfpa(o')] +o(i/N 2), (14)

kz I = X k)1 -A1I)J
/k. j I ,

where from (A.18)

fk lj A 4[ # itR'fikfItR13j + # tR bikf RhPi, + ftRjt bik+ fii '~''i (15)

+diagf,, i....~ represents an M x M diagonal matrix with diagonal entries I,, a.... l, respectively.

Vol. 17. No 3. July 1989
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In particular for the conventional MUSIC case with (A.45) in (14), after some simplifications it reduces
to

1 K [M A,Ak l a &)2_I ,a C)2E[Q(w)= Q(w)+-~ 1 1+( /N
N k (A, k) 2 {i13a(o4- I# La(w)l -} +o(1/N 2

)

IK A crQ(,) + - Ya---.-(M - K )13a(w)2l'- Q(w)] + o( 1/N2), (16)

where A1, fli, i= 1,2,..., M, are as defined in (7) and Q(w) is given by (7a).
Similarly, from (A.52)

Var(O(W)) -A 5-2()

2 K K mI 1

N ,=1 j=, k=. 1 (A,-Ak)(A -X,)
k'i I*j

+o(I/N 2), (17)

which again for the conventional MUSIC case reduces to

Var(6(&J)) A 0,2(w.)

N (A,- Ak

K AK ~ ,)22
,-i (AI,_Ai - A) ,a( ,l' ,( +o(I/N

2 K A 11r2 128)
N Q(o) _ EI r-a2)e2 iFa (a) +o(I/N 2 ). (18)

Since along the actual arrival angles, Q(wOk) =0, k = 1, 2,..., K, (18) allows us to conclude that within
the above approximation,

Or2(k)=0, k=l,2,...,K, (19)

i.e., in all multiple-target situations, where the conventional MUSIC scheme is applicable, the variance
of the sample estimator for (7a) along the true arrival angles is zero within a first-order approximation.
It is easily verified that this result agrees with those of Kaveh et al., for a two-source case (see equation
(30) in [8]). An algebraic manipulation shows that their Var(!D(wk))= 0, agreeing with (19) here.

In particular, when all signals are uncorrelated with one another, that leads to some interesting results.
In that case, the backward covariance matrix in (9) is identical to the forward covariance matrix in (6),
i.e., R'= Rb= R implying equality of all eigenvalues and eigenvectors for these matrices. In that case,
from (A.20),

f;k,, , 2A :, A, 0 i7IY ). (20)
Signal Processing
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Let -(w) and 77(w) denote the bias in the f/b and the conventional null spectrum respectively. From
(14)-(18) and (20),

i -) E[QU(-)] - (wj)

I K A, 2

[( M - K )lpa(o)12 - 0(o)] +o(l/N 2 ) = (w)+o( 1/N 2 ) (21)

and

2 Q K A,,-
j2(/O) = N I (A-. a(w)12 + o(1/N 2) = (). (22)

Notice that once again tWk) - 0, k 1, 2 .. , K. Though there is no significant advantage in using R?

instead of R' when the exact covajiances are known (except when there is a coherent source), this is no
longer true when these covariances are estimated from the data. Then, in an uncorrelated source scene,
only half the number of samples ar- required to maintain the same performance in terms of bias compared
with the conventional scheme while maintaining the same variance. Similar improvements in performance
can also be deduced for a partially correlated source scene (0< jPi, < 1). To see this, let

Pit Eu(t)u,(t)] 7 1Al e"', i,j = 1,2... K
P"-( El~u,( t)12-]E[lu,( t)1-2]) ' 2

represent the correlation coefficient between the signals u,() and ut). Then in the case of the f/b scheme.
the equivalent correlation coefficient , appearing in (IOa) for the same pair of signals can be shown to
be [12]

t = [pAj e -j '1 ' cos((M - I )wo, + k,,,), w,, =(ow, -w,)/2.

Clearly, I,j -_ Ip,1I; or stated in words, the f/b scheme has in effect decorrelated the signals beyond their
original correlation level. Since uncorrelated signals have superior performance in this new scheme, any
amount of decorrelation will essentially lead to improved performance.

The general expressions for the bias and variance in (14) and (17) can be used to determine the required
sample size for a certain performance level or a useful resolution criteria. Though the general cases are
intractable, an analysis is possible for two uncorrelated sources. As shown in the next section, the
performance of the proposed scheme can be evaluated in terms of a resolution threshold for a two source
scene.

3.2. Two-source case

In this section we will assume that the two sources present in the scene are uncorrelated with each
other. In that case, from (21) and (22) with K = 2, the f/b scheme is uniformly superior to the conventional
one in terms of the bias of the estimator by a factor of two. This conclusion is also supported by simulation
results presented in Fig. I with details as indicated there.

The deviation of -q(w,) and j(w,) from zero-their nominal value-suggests the loss in resolution for

the respective estimators. Since the estimators have zero variance along the two arrival angles in both
cases, for a fixed number of samples a threshold in terms of SNR exists, below which the two nulls
corresponding to the true arrival angles are no longer identifiable. This has led to the definition of the
resolution threshold for two closely spaced sources as that value of SNR at which [8]

E[Q(&1 )J ,E ] E[ Q((w, + w,)/2)], (23)

\ .1[ 1- NO I. Julh IJ4
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0.003-

....... f/b scheme for two uncorrelated sources

* f/b case simulation with N = 50

conventional scheme for two uncorrelated sources
L,.J02 -

conventional case simulation with N = 50

BIAS -.. ..

0.001

.. . . . ..... ................................... '............. ...I....

0 -
0.15 0.25 0.35 0.45

ANGULAR SEPARATION (w, -w2)

Fig. I. Bias at one of the arrival angles vs. angular separation for two equipowered sources in an uncorrelated scene. A seven

element array is used to collect signals in all these cases. Input SNR is taken to be 10dB.

whenever Var(Q(co,)) = Var(Q(w 2 )) = 0. To simplify (23), notice that in the case of two uncorrelated

sources with unit power, the eigenvalues and eigenvectors of the signal subspace has the form [12],

i, M(I ±Ip), (24)

and

f(u±u ±)/ 2(l±Si(M)), Si(Mw) > 0,

wher I (u, : u,)V-, 2(l 7 Si(M wd)), otherwise, i ,( 5

where

u =eJ  
'"'M

2 a(w,), u2 =e At'" 2 a(w2), (26)

with
pa t (w,)a(wo) = e'5 1 t~,S(oa, S(oa-sin Mod .(w 1 -O) (27

Msinw( to,)

Defining 01 (M"o)/3, we can find several inner products that are valid for Si(Moj4 ) > 0. In particular,

1 +Si(Mwod)
4 4- , (28)

2
JP'4,al , 2i-1-S(w) 4A 2 9(A' (29)

for i - 1,2.
Slgnal P rce rl ig
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With the midangle w, =(a),+ w,)/ 2, we also have

2(Si(Mw,/2)) 2  (30)
I + Si(MWd)

and

Iij3a(wm)12  0. (31)

Using these inner products, Kaveh et al. found the resolution threshold el( =MP/i(T, array output
SNR) for the conventional scheme to be [8]

NL M- 4 {+ (l+5(M_ 2) j (32)

The corresponding threshold T for the proposed (f/b) scheme can also be found by using these norms.
In that case from (23),

-- i I1I( 2 + .+5M2 2  C,1-r2. (33)
N[A 4 { (M2 - 2) )}] r/

This asymptotic analysis is also found to be in agreement with the results obtained by Monte Carlo
simulations. A typical case study is reported in Table 1. Under the equality conditions in (23), the

probability of resolution was found to be 0.3 in both cases there. This in turn implies that the above
analysis should give an approximate threshold in terms of e for 0.3 probability of resolution. Comparisons
are carried out in Fig. 2 using (32), (33) and simulation results from Table 1 for 0.3 probability of

resolution. Figure 3 shows a similar comparison for another array length. In all these cases the close

agreement between the theory and simulation results is clearly evident.

Table I

Resolution threshold and probability of resolution versus angular separation for two equipowered sources in uncorrelated scenes

Angles of arrival Uncorrelated Uncorrelated (f/b)
Angular separation

0 , 2d SNR (dB) Prob. SNR (dB) Prob.

40.00 43.00 0.1090 16 0.21 13 0.24

17 0.36 14 0.38

18 0.48 15 0.3)

19 0.70 16 0.58
20 0.81 17 0.61

55.00 58.00 0.1372 12 0.20 9 0.21

13 0.40 10 0.37
14 0.50 1 ) 0.45
15 0.59 12 0.65

16 0.83 13 0.67

120.00 124.00 0.1860 6 0.15 4 0.25

7 0.24 5 0.38
8 0.49 6 0.50

9 0.5f 7 0.57
10 0.79 8 0.75

Number of sensors 10, number of snapshots 75, number of simulations 100.
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2 0 . .. . .
........... f/b scheme using (33)

f/b case simulation with N = 75
conventional scheme usinz (32)
conventionad case simulation with N 75

15

THRESHOLD 10
SNR (dB)

5

0.1 0.15 0.2

ANGULAR SEPARATION

Fig. 2. Resolution threshold %s. angular separation for t.,,o equipomered sources in an uncorrelated ,enc -X ten clement arras,
used to reced.e signals in both case,.

25

...... f/b s0heme using (33)

* f/h zase simulation with N = l(KI

2 . conventional scheme using (32)

+ conventional case simulation with N = 1()

15

TVI RESHOLD
SNR (dB) .

10

0.1 0.2 03

ANGULAR SEPARATION

Fig. 3. Resolution threshold %s. angular separation for tso equipo%%ered sources in an uncorrelated scene, A ,eSen element irra\
is used to receisc signals in both case,.

The above 0.3 probability of resolution can be explained by re-examining the arguments used in deri\ing
the resolution threshoids (32) and (33). In fact, (23) has been justified by observing that Var( Qw(,)),
Var(Q(w,)) 0. Although Vat(Q((w 1+w,)/2)) is equally important in that analysis, using (18) and (22)
it is easy to see that these variances along the midangle have nonzero values. This implies that though j
and Ej satisfy (23), in an actual set of trials the estimated mean value of Q(kw1 + w:)/2) will almost always
be in the interval (0, 2E[0(( , +w.)/2)]) and clearly the resolution of the two nulls in O(w) is possible
only if this mean estimate lies in the upper half of the above interval. In the special case of a symmetrical
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density function for the mean value estimate along the midangle, this occurs with probability 0.5 and the

observed range may be attributed to the skewed nature of the actual probability density function.

4. Conclusions

An improved high-resolution technique that incorporates the forward array together with its complex

conjugated backward form for estimating the directions of arrival of multiple signals is described here.

An asymptotic analysis together with expressions for m,:an and variance of this proposed f/b scheme is

presented first- and the conventional MUSIC scheme is then derived as a special case of this general

analysis. In particular, when all signals are uncorrelated, the bias of the null spectrum estimator for the
f b scheme is found to be half of that in the conventional case. Further, a resolution threshold, which

depends on the relative angular separation, number of sensors, number of snapshots and signal-to-noise

ratios, for two uncorrelated, equi-power:d, closes. spaced signals is derived here for this new scheme and
this is compared to a similar result obtained i, the conventional case [8]. From these comparisons, to

detect two arrival angles under identical conditions one needs approximately half the number of snapshots
with respect to the conventional case. These conclusions are also seen to closely agree with the results

obtained from Monte Carlo simulation studies. For this scheme, similar computations can be carried out

in a two coherent source scene in order to obtain the corresponding threshold 12, 131.

Appendix A. Asymptotic distribution of the sample eigenvalues and eigenvectors

corresponding to distinct eigenvalues of R

With symbols as defined in the text, S representing the ML estimate of the forward'backward lf.' b

covariance matrix R, we have

k R' + R" h _ fABl (A.)

2A.2

where
ri .= . Bitit3.j ... /,. E=zi,e .. .

.1 -- diag(,, .A",r. r"], L, rdiag[ T,, . ., . T,

and B. satisfies ,,, ;,, 0 O, i 1 , 2 .. % for uniqueness. A, is well known, the eigenvectors are not

unique, and let C represent yet another set of eigenvectors for ., i.e.,

s - Cic, i.A.3)

where

C , c , c., . ... , , (A.4)

CC: Iw A.5)

For reasons that will become apparent later, C is made unique here by requiring that all diagonal elements
of V given by

1 , - : (' A .0 )
\,,,1"BC, I f le),

--.-.-- nnn nnm n mnm ll ll ll
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are positive ( "0, i , 1 l. ). In what follows we first derive the asymptotic distributio-i of the set

of sample eigen\ectors and eigenvalues of S given by (A.3)-(A.6) and use this to analyze the performance

of the sample directions of arrival estimator O(w) in (13). This is made possible bv noticing that although

the estimated eigenvectors e,......e;, in (13) are structurally identical to their counterparts

3,13 .. fl.. and in particular have j,, ---0. nevertheless as shown in Appendix B, they are related to

c,. , 2 K, through a phase factor, i.e.,

ec,, i 1,2. K A.7)

and hence

K K. K

Qti- '"a(wO) I zl c~a(w))j -- -~ ) (A.8)

k here

,W i a( ,U .(A.9)

lhu, the statistical properties of 0 w I can be completely specified by those of c,, i 1,. 2.K, and

tonsard thi, purpose, let

f- -- , N'vi -i . (A .10 )

G [gg g, . NC -- ), (A. II

J4. SRf - f; CIC B 1 V' (A. 12)

Shcre I is as defined in (A.6) with v,, 0, i 1, 2, .. M. Further, let

>,lr \(-) - ,'-, [tIB.Ix'l) l(,I )+ xb(,, )xb nfl))) iI
SN

-z,, n! HZ ?I)zn)'+z n)(Zni")-).{-, tA.13)

SN

'. it h

t'i 1 ) r I N(0, B k' " I IA.14)

and

:In) h In NI0, BjR"B). (A.15)

It Is casil\ %erified that these random vectors preserve the circular Gaussian property of the original data

vectors. Again. from the independence of observations, asymptotically every entry in V_ is a sum of a

large number of independent random variables. Using the multivariate central limit theorem [1], the

limiting distribution of I tends to be normal with means and covariances given by

I_ \ F_ /[ '_" n I + : " n * Ao ,, . (A.16)
___II I t a a1)- 0

l , N , I -

Here onw\ard,, \khenever there is no confusion, we will suppress the time index n) since

:[ ! I z *+ :,) :," *j (, f[. x'( x' + x'(xr' l , IF[ i, -. R/i, 3, A,1,, (A. 17)
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and

E[u,,u*,] =- f{E(z', z* - *z)+E(zI* z,*z ,)+ E(.zb*Z'*Z) + E(,,+ z z, )}]- A,,8,,.
Nk

Using the results3 for fourth-order moments of jointly circular Gaussian random variables and after some
algebraic manipulations, we have

E[u,,u*]'[,]"_ f- + 3Rb~k~

+ fi1Rfj t 5R bi~k + fitbi~ R f kI (A. 18)

In obtaining (A.18), we have made use of (A.17) and the fact that for circular Gaussian data

IJz'Ezxrx] =]fi 1 = pfExrx) ~ = 0 (A. 19)

Here - , is the inverted f* vector with '%.m =I3j._,+i. In an uncorrelated source scene, it is easy to show

that fitRjJ = tfij, for all ij. Using results of Appendix B, it then follows that 5, = fije J , i = 1,2,..., K
and [HK+,i---M.. =. ................ , MIV, where V is an (M-K)x(M-K) unitary matrix. In that case,

this together with the identity fia(Wk)=0 for i= K + 1, K +2,..., M and k= 1, 2,..., K simplifies the
above expression into

Pkj= 21XiX(ik~J+ji +ti~ifk) (A.20)

Proceeding as in (A.18) we also have

E[uvuk,] = 4 A k IR kJ

+ fi 1Rf ik jRR1g' + fi'Rbjk5j I --AJ 'dkj. (A.21)

Using (A.12) together with (A.13) and (A.10) we have

T=A+ IU= +-= +I

which gives the identity

J -- , = Y i + I F Y(A.22)

To d r the asymptotic properties of the sample estimates corresponding to the distinct eigenvalues
A,,: AK of R, following [ 1, 6], we partition the matrices A, U, F and Y as follows:

L 1 ItU_21 U22' 0= F2 , K, Z.

Let :,, z,. ,z:4 be jointly circular Gaussian random variables with zero mean. Then (refer to [15] E[: t:*z,]=
E[z,.:-lo[zt:J+ E[z,z*]E zu].

%,ol 
t
7

.
Noj 1. Julv1y I[
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Here A, U, F, and Y, are of sizes K x K, etc. With ,A.23) in (A.22) and after some algebraic
manipulations and retaining only those terms of order less than or equal to 1/N'N, we have

Nr- U,, U_. 0 0'" Y" Y,
01W

A,W ' A"w ] F [F 01 rWii 22
. W, ,l + i , r . +o(I/N ), (A.24)+-7N or 2W,. 0 0 w, i 0

where
W , = W ( Y , -1I ) , ( A 2 5 )

W , = ',/W 1 , W _, v /N Y, 1, (A .26)

and the column vectors w,... ,WK are defined to be

SW' , . WK]AW. (A.27)

Similarly,

K= 0 V 2 A2l2 2 [W[ W 2 , 20II +'i + o(/N). (A.28)

Thus, asymptotically for sufficiently large N, from (A.28) and (A.24) we have

0= Wl+ Wll, (A.29)

WI, + I%, W 0, (A.30)

U1  ,llA +F,+ . ,W ,, (A.31)

and

(A.32)

Since y,, -0, this together with (A.25) and (A.29) implies

wv,, O, i= 1,2 . K and w,,=-w*, i,j=l,_.,.K, i tj

which when substituted into (A.31)-(A.32) gives

. ,u, i= 1,2,..., K, (A.33)

U'f i. . 1 2 .,K, i~ej,
( , , i(A.34)

... K + 1.. .... . .

From (A.I I) and (A.6) we also have

G !IW(C - )=WhN(V- 1) ,,!Nh Y ll - I Y12

r'l Y. - !l K
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which gives

[g 1,g 2 , . ,gK]=B[wI,w .  WK] or g,=J (c- ,:B ,,, i~I,2. K.

This together with (A.10) and (A.33) gives

1,=,+(l/ )f,=A,+(l/ N)u,, i= 1,2 ... K, (A.35)

and

Ilc p+ (l/.JN)Aw=3+ (1/sfW) 1 w~ft, i =1,2,.,K. (A.361

Thus, the estimators I and c,, i = 1, 2 .... K, corresponding to the distinct eigenvalues of R, are asymptoti-

cally multivariate Gaussian random variables/vectors with mean values A, and j3,, i = 1, 2 ... , K, respec-

tively. Furthermore,

Cov( 1 ) E(uu 1 ,],,, i,j= 1,2,..., K (A.37)

and

M N1 M M __ _,,, - -
Cov(c,, c,)= I I E[wk,wl]Pki'kN;-k= I., (A.38)

Notice that c, in (A.36) are not normalized vectors, and it may be emphasized that in the case of cigenvectors,
the above asymptotic joint Gaussian property only holds good for these specific sets of unnormalized
sample estimators. However, from (A.5) since the eigenvectors c,, i = 1, 2,..., K, appearing in (A.8) are

normalized ones, to make use of the explicit forms given by (A.36) there, we proceed to normalize these
vectors. Starting from (A.34), we have

2 1 M1 1-" cic; =1+ _ L I V~i ,12>  1 ,  (A.39)

and, hence, the corresponding normalized eigenvectors ,, i = 1, 2,..., K have the form

, =' Iic,1-'I = Vf N ! \ - '/2 + At

C, I-' I+-Y I I J +7 ~ f 3
NI

I Vl. 2\ 1NI - 1 N M
2N + 1 Iwk,I'ifl+o(1/N) •  (A.40)

I'* / i ke. I*i

Using (A.34) and (A.18) we have

2N

I
I o i=1,2,. K, (A.41)

Vol I1. No 1, Juh I18
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since from the asymptotic joint normal distribution of these zero-mean random variables u,,(i j), their
odd-order moments are zero. Thus, asymptotically these normalized estimates for the eigenvectors

. .., of R are unbiased and the exact bias expressions are given by (A.41). Furthermore, from
(A.40)

2Nly ,~ k Wk, + k41W

_ VWk,fkf3J 4.. fi~ k k k)'f'
N k I k -1 1

k k k o 1i1
Al I M 1 M4

+ 1 ZWk wh,lI p%+ Y Y IWk, lw I, +o(/N). (A.42)
2 ~ N1--N k-l I1

k-, I -I

Again, neglecting terms of order I/N 2 and proceeding as above, this expression reduces to

I ~jJ] ~El~J]f3IY + E[WkW7]PkP+o(1/N 2)E[ ]:p,- 2N k E[iWkl']+ , E[I wk,'] +k I I',
(k ,k 1 kot 1I

M1 M f. M kk 1

+- z z ki +43o(1/N-), (A.43)N k =1 (,- k)( -I-- )

Nks I I k

and proceeding in a similar manner and using (A.21)

Lk*'I k~jJ

I 1 F, f / ,kkh-

+/MI I - PkP13+O(1/N2). (A.44)

N k - I AI -I A-A)
k , I'j

An easy verification shows that Cov( ,, c,) is once again given by (A.38), but nevertheless, (A.42)-(A.43)
will turn out to be useful in computing the asymptotic bias and variance of the sample direction estimator
0(w) in (13).

The conventional MUSIC scheme [16] now follows as a special case of this analysis. In that case, from
(A.16)-(A.18) retaining only the terms corresponding to the forward array, we have

t1 3:R, P IJJe;Rp, = A,A, ,A 8 1. (A.45)
S,gnal Promewng



B. H. Kwon, S. U. Pillai / Arrayv processing for cngle of arrital 275

Thus, for the conventional MUSIC case using (A.45), we obtain

E[J, _ I Akj Pi + o( l/ N2), (A.46)
2N, (Aj - ' j)-

S[ A4 AA, +E[c, cj=PjP-- Y ,+2N k (, -A k= (A) - ,),
kof k;-

1 A ,Ak 2

N ka (A, -Ak) 2PkIlk8,+O(/N), (A.47)
k 'i

and

FM lp Ir AA AjAk piTI AA,-jT(-,,+(/ )

j 2 - )2lfT jfI3(18 +o1/2)2N k=I(AAk k (Aj-Ak N (A,-A

where Aj, Pi, i = 1, 2,..., M are as defined in (7).
Once again for the f/b case, using (A.8)-(A.9) and recalling that the eigenvector estimators appearing

there are normalized ones, we have
y ,((o) = 1 1a(w)12 -- at(ow ) j. a(w) (A .48)

and from (A.43) and (13) we have

[N) 1 + k ( i- 10

k=, E,, _ - at((°)fikf3 a(t°) +o(I/N 2), (A.49)
(A,11 k -Akk)(X, A

ks, lot

and this shows that

E[() (w) as N- cc.

Also,

Var(Q(w)) = E[0 2(wo)]-(E[Q(()]) 2 = [(I- ) -( E[(I - .

K K

= Z Y (E[yyj]- EvyjE[yj]). (A.50)

Using (A.48) and (A.42), after a series of manipulations, we have
1

E[y,yj,- E(yE(y, ] = -I E(d,(wo)d,(w.)]+o(I/N 2),

where

*d,(w) -'. (W()fikfi:a(w) + wtia'(w)Afitka(w))

rol I', NO 3. Jul I")I9
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which gives

E~v~,I -E~v]E~v] M . Re[{Fk t (o)fi,P3a(w )+lFk,,:a t(w) f3IIa(w )}a'(w )13k1a.(w )]E [y j ] - E [y ,]E [))] = - k , , - -V E( -

k* ;.j

+o(1/N 2). (A.51)

Finally, with (A.51) in (A.50) we get
K K NI Mf Re[{" .... +2 K K I Al R[{rkIJa(w)fi,1la(o.))+ Fk,,,a(w,)1,Pa(w )}a+(w)P" "'(w

Var(Q( I))=N  E Y Z
N _ ,=1 k-, 1-1-Ak)(A.-A 1 )

+o(I/N2)-*0 as N- . (A.52)

Thus (w) is a consistent estimator in all cases.

Appendix B. Equivalence of eigenvectors

Let k be an M x M Hermitian matrix with distinct eigenvalues ., A.. , where m,, m. ..... m_
represent their repetitions. Then m , + m, + + mr = M; further, let0ito1, ...... 3,,, .... ... f13,i, represent
one set of associated normalized eigenvectors. With

B, il I 12, 1], 84,8h1 =I

and

A = diag[ ,,. i,,. , ,....Ar,,

we now have

A A IAB. (lBA)

Let

represent yet another set of normalized eigenvectors of R. Then

B/B t = I,, R = 2 B, (B.2)

and from (B.1) and (B.2) we have

or equivalently

A V= VA, (13.3)

where

V=Ai2. (B.4)

Thus, V is also unitary and, further, A and V commute. Moreover, from (B.3) we have

A,, = v,, A,,

Signal Proce-ing
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which for , gives v, 0. This together with the fact that V' is unitary implies V is block unitary with

blocks of sizes mn, mi,_. mn,: hence from (B.4) we have

Vi 01
B, V 2  (13.5)0 ,

where

V V>I,, i 1, 2_. .

Notice that in the special case, when all eigenvalues of f? are distinct, then V is diagonal and unitary
and each diagonal entry is a phase factor. In that case

fit, =e&bf 2., i =1,2,. .,M. (13.6)

In particular, different sets of signal subspace normalized eigenvectors of S are related in this fashion
(see (A.7)).
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